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A universal equation for the Linn problem on a periodic boundary layer is ob- 
tained and solved numerically with certain values of the parameters. 

The method presented in [i, 2], as a simple analysis shows, can be used in the calcula- 
tion of a periodic laminar boundary layer only with small Strouhal numbers. The use of a 
parametric method for the case of large Strouhal numbers is discussed in the present article. 
The solution of the problem of an oscillating laminar boundary layer in an incompressible 
liquid proposed by Linn [3] is used for this purpose. 

Let us recall the main propositions of Linn's theory. The velocity U(x, t) at the outer 
limit of a boundary layer is considered as the sum of its average value U(x) over the period 
and of some periodic contribution U1(x, t). The velocity components and pressure in the 
boundary layer are assigned in such a form. The operation of averaging over the period and 
a number of simple transformations lead to equations for the average motion in the boundary 
layer in the form 

u - - - 8 ~ + 6  ~ ~ + v  ay ~ +R(x,  y), 

~x + --~-- = O. 

(t) 

The equations obtained differ from the usual equations of a steady laminar boundary layer 
by the presence of the term R(x, y), which can be considered as an additional volumetric force 
of an inertial nature. Linn calculates the quantity R(x, y) using equations which he obtains 
for the oscillatory componehts of the motion. In this case, when the Strouhal number is 
large and the velocity at the outer limit of the boundary layer is assigned by a harmonic 
law in the form U(x, t) = U(x) + W(x)sin ~t, we will have 

w dw 
R (x, y) . . . .  R~ (D, (2) 

2 dx 

R1 (~) = exp ( - -  ~) [(2 + ~) cos ~ - -  (1 - -  ~) sin ~ - -  exp ( - -  ~)l. (3) 

Here ~ = y/6o, ~o = 2~/~. The quantity ~o, which can be called the thickness of the oscil- 
latory boundary layer, has the same order with respect to the Reynolds number of the stream 
as does the thickness of the steady boundary layer. The solution of Linn's system of equa- 
tions (1)-(3) naturally depends on the form of the functions U(x) and W(x) and the oscilla- 
tion frequency ~. Let us transform this system so that the indicated quantities do not enter 
into it explicitly, in other words, let us reduce the Linn equations to a universal form. We 
introduce a stream function, representing it in the form of a sum of the stream functions for 
the average and oscillatory motions so that 

I~ (X, y, ~ ) =  1.~(X, y)-'~ 1~1 (X, y, ~); +1 = O. 
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Changing to the new variables 

By B~ (x, v) 
x = x ,  r l - - - - - -  (p(x, rl) = ~_ (4)  

h (x)  ' g (x) h (x)  ' 

where h(x) is the characteristic transverse linear scale in the boundary layer, taken for 
the average motion, and B is a normalizing constant, with allowance for (2) and (3) we can 
transform Eq. (i) to the form (z = h=/~) 

B= d3cP ( - , ,  U z, 1 oeg~ _F~ (OtP c3~r Oe O 0"2r )__~7,z [(Oq~ t2 ] 1 W W,zRt($,=O" 
- ~ -  @ U z~--2-  oO ~ - -  z -&-X- " Oq ~ - c?~ " -OxOr I [ \ ~q ] - -1  4- V 

( 5 )  

Here 

y h ' 1 . [ /  ~ (6)  
~ -  60 B6 ~ ~1 ~ - - _ _ - ~ - z ~ l ;  

the total derivative with respect to x is denoted by a prime. 

We can assign the multiparametric family of average velocity profiles and, accordingly, 
the stream functions in the boundary layer in the form 

u ~ Oh 
7 U (n, &, q,. L); * = ~ ( q ,  &, q~, L); 

k : l ,  2, 3 . . . . .  n = O ,  1, 2, . . .  . 

The system of parameters is determined by the following equations: 

_ _  W '~ d"W  z ~ �9 V / [ ~  = O k - I  d ~ O  z~ " q,, = . . . .  , fo, = 2 z .  ( 7 )  
dx ~ ' U dx" 

It is assumed that the functions U(x) and W(x) are analytical. The infinite sequence 
of parameters fk is analogous to Loitsyanskii's series of parameters which he introduced in 
solving the problem of a steady boundary layer [4]. The system of parameters qn reflects 
the effect of the oscillatory motion with an amplitude W(x) in the outer stream on the aver- 
age motion in the boundary layer. The first of these parameters qo = W/U represents the rela- 
tive amplitude of the velocity oscillations; the next parameter q~ = (W/U)W'z, in addition 
to the relative amplitude, also includes the first derivative with respect to the longitudi- 
nal coordinate of the amplitude of the oscillations of the outer stream. A positive value of 
ql corresponds to oscillations which increase along the surface over which the flow occurs, 
while a negative value corresponds to damped oscillations. The parameter f~ = /(~/2).z is an 
independent parameter which reflects the effect of the oscillation frequency of the outer 
stream on the average motion in the boundary layer. The previous history of the motion in 
the boundary layer is taken into account through the quantity z. With arbitrary functions 
U(x) and W(x) all the parameters introduced are independent and are henceforth considered as 
independent variables. 

Assuming that the function ~(q, fk, qn, fw) of an infinite set of arguments is ana- 
lytical, we can write 

Ox oL d ~  Og ~ + k = l  ~=o ~ dx (8) 

with the following equations for the derivatives of the parameters being easy to obtain by 
differentiation of Eqs. (7): 

df~ 
dx 

dq~ 

dx 

Uz 

O~ ~ Alqt ql , q~- 
- -  U z  , w h e r e ~  = n  qg q~--f~q'~ -~ qo ----; (9)  
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_ _  0 t~ 0 ( ~ ) =  [o F dfo = - - , w h e r e  
dx ?.Tz 2 

Here we introduce the designation 

F =Uz'. 

Using Eqs. (6)-(10) we can transform Eq. (5) to the following form: 

(lO) 

Oq s 2 

+ 0'___~ ( &p 
On ~ \ OL, 

.o,p o'J,+ ~ a~ o~ ' ) -  

+ z_a + = ( n )  - -  ~=~ o ~  ~ o. 
n=0 . 0~q~  

In order for the equation obtained to be universal, it is necessary that the function F = 
Uz' entering into it be expressed through the parameters and functions which depend only on 
the parameters. This can be done with the help of the integral impulse equation, which is 
easily derived for the average motion on the basis of Eqs. (I)-(3). Simple transformations 
of these equations and integration across the boundary layer from zero to infinity lead to 
the following integral �9 

d (D' 6**) + 0 U' 8" = % 1 60 WW'. 
dx p 4 (12) 

Here 

~*= 1 - 0  -3- 1 - ~ _  ,~v; , U 
O. O 

x~ = ~ - -~ - -u=o"  (13) 

Using the variables (4), one can write 

6* = hH*, 6"* = hH**, x~ =---h-- 

w h e r e  t h e  q u a n t i t i e s  

- f  on = B . G 1-- on d., 
0 0 

(14 )  

depend only on the parameters. Using Eqs. (8) and (9), one can change from the longitudinal 
coordinate x to the spatial parameters in Eq. (12). If one chooses the thickness of impulse 
loss as the scale of the transverse coordinate in the boundary layer, i.e., h(x) = 6*~,(x), 
then Eq. (12) takes the form 

F = 2  ~ - - [ x ( 2 + H )  4 [~ ' 

where, in accordance with (14), we will have 
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6* x~,6** 
H H* ~ = ~  

6** ~0 

It follows from (15) that the functional F is composed of quantities which depend only on 
the parameters, and therefore the substitution of Eq. (15) into Eq. (ii) makes the latter 
universal, i.e., not explicitly containing the velocity at the outer limit of the boundary 
layer (neither the velocity of the average motion nor the characteristics of the oscillatory 
component). The universal equation (ii) is integrated once and for all with the following 

boundary conditions : 

a~ ~ (16) ~ = - - = 0  at ~ : 0 ,  - - - - + 1  as 0 -+00 ,  
an on 

= % ( N )  at f h - - - - q ~ = [ ~ = 0 ,  k =  1, 2, 3, . . . ,  n- - - -0 ,  1, 2 . . . . .  

where ~o(n) is the Blasius solution for the steady boundary layer at a plate. In this case 
the normalizing constant is B = 0.47. 

The infinite number of variables in Eq. (ii) forces one to be confined to "fragments" 
of this equation with a finite number Of parameters in the numerical integration. Let us 
consider an approximation which can be called local with respect to three parameters. In 
this approximation the derivatives with respect to all the parameters are discarded and only 
the parameters f~, q~, and f~ are retained. We note that the parameter qo is not taken into 
account, since it enters only into terms containing derivatives with respect to the param- 
eters. Equation (ii) in the local approximation with respect to three parameters has the 
form [the function RI is disclosed through Eq. (3)] 

q~ exp 
B ~ -  

B ~ sin --B ~ - e x p  � 9  = 0 ,  (17) 

d~ d~ 
~ = 0  at ~ = 0 ;  - - - ~ 1  ~ ~ - + ~ .  

dn dn 

The f u n c t i o n a l  F e n t e r i n g  i n t o  t h i s  e q u a t i o n  i s  c a l c u l a t e d  f rom Eq. (15 ) ,  w i t h  r = ~ ( f l , q ~ , f ~ )  
and H = H ( f l ,  q l ,  fw) .  

E q u a t i o n  (17) was i n t e g r a t e d  on a computer  by the  t r i a l - r u n  method w i t h  i t e r a t i o n s .  The 
v e l o c i t y  p r o f i l e s  and the  c h a r a c t e r i s t i c  f u n c t i o n s  r F, and H in  dependence  on t he  p a r a m e t e r s  
f l ,  q l ,  and f~ a r e  o b t a i n e d  as a r e s u l t .  Some of  t he  c a l c u l a t e d  c u r v e s  a r e  p r e s e n t e d  in  F ig .  
I. It is seen from the graphs that the amplitude parameter ql = (W/U)W'z has a marked effect 
on the magnitude of the average reduced friction and on the average position of the point of 
separation. With an increase in the positive value of this parameter the average friction 
in the boundary layer increases, while the point of separation is displaced in the direction 
of a larger negative value of the parameter f~. Hence it follows that the presence of oscil- 
lations with an amplitude which increases along the coordinate leads to protraction of the 
separation in the diffusor. Damping oscillations (ql < 0 because W' < 0), conversely~ stimu- 
late the separation. When q: = 0, which corresponds to W = 0 or W' = 0, the average motion 
in the boundary layer coincides with the steady motion. Thus, as also follows from Linn's 
work [3], with large Strouhal numbers the oscillations of the outer stream with a constant 
amplitude along the boundary layer do not affect the characteristics of the boundary layer; 
in this case the value of the relative amplitude which is possible within the framework of 
the theory of a laminar boundary layer is not important. It is interesting to note that the 
latter arguments are valid only in the case of the local approximation discussed. But if one 
allows for the derivative with respect to the parameter qo in Eq. (ii), then the quantity 
Go(q) = (q~/qo) -- f~qo will include in explicit form the parameter qo, which is equal to the 
dimensionless amplitude. Thus, the parametric method also allows one to estimate the effect 
of the amplitude of the oscillations on the characteristics of the boundary layer in the case 
when W' = 0, i.e., ql = 0. 
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Fig. 1. Dependence of reduced coefficient of friction and 
characteristic function: a) on the parameter f~ with q~ = 
const and f~ = 2; b) on the parameter f~ with q~ = const 
and fm = i; c) on the parameter q~ with fl = const and f~ = 
2. 

I '<~ ~! 

As for the influence of the frequency parameter fm = (/~7m/2)z on the characteristics of 
the boundary layer, it is unimportant in the range analyzed. As follows from a comparison 
(Fig. la, b),however, with an increase in fu the curves of reduced friction for different 
values of ql differ from the corresponding curve for steady motion (ql = 0), i.e., the in- 
fluence of the amplitude parameter increases somewhat with an increase in the oscillation 
frequency. Therefore, when ql > 0 some increase in friction in the boundary layer and pro- 
traction of the separation Nre observed with an increase in the oscillation frequency of the 
outer stream. An increase in frequency leads to the opposite effect when ql < 0. 

As seen from Fig. i, the graphs of F(fl) and F(q~) are close to straight lines, al- 
though the marked difference in slopes admits of a rough linear approximation of the function 
F only for small values of the parameters. Neglecting the influence of the parameters fe on 
the function F in their analyzed range, we will have 

F = 0 .44-  5.35 f1-4- 2.10 ql. (18) 

A distinctive aspect of the effect of oscillations on the average stream is the appear- 
ance of inflection points in the velocity profiles, which has been noted by a number of in- 
vestigators [3, 5]. In the integration of the universal equation in our case similar results 
are obtained with positive values of the parameter ql. 

For the solution of a concrete problem when the velocity distribution in the outer 
stream is known it is necessary to establish the relation between the parameters and the 
longitudinal coordinate x. For this purpose one must turn to the impulse equation, which 
is written in the following form: 

~f~ ~, ~. 
= -=_ F + ~v fi; (19) 

dx U 

the form of the function F = F(fl, ql, f~) should be known as a result of the solution of 

the universal equation. Using the obvious relations 

W W' , / - ~  fl 
q*= ~ o' f i '  L =  I /  - 7 -  o' (20) 
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the function F is transformed in such a way that it remains an explicit dependence only of 
the parameter fl and the characteristics of the outer stream. When (18) is used the computa- 
tion is carried out only for the first equation of (20). Knowing the velocity distribution 
in the outer stream, one can solve Eq. (19) and consequently determine the dependence f1(x). 
Then the functions q1(x) and f~(x) are established with the help of Eqs. (20). From the 
values of the parameters known for each given cross section of the boundary layer, obtained 
once and for all in the integration of the universal equation using graphs or tables, one 
can find the average reduced friction and the average velocity field in a given cross sec- 
tion of the boundary layer. It should be noted that in the general case Eq. (19) is non- 
linear and requires approximate integration. 

To estimate the accuracy of the proposed method we calculated the average reduced fric- 
tion at the front critical point of a body (F = 0) with assignment of the velocity at the 
outer limit of the boundary layer in the form U(x, t) = Ax(l + ~ sin ~t). With ql = 0,01, 
f~ = 2, and fl = 0.097 we will have ~ = 0.39 (see Fig. la). An exact solution [5] under the 
same conditions gives ~ = 0.346. The disagreement with the value obtained above is 12%. Re- 
finement of the solution of the problem can be obtained by the integration of a "fragment" 
of the universal equation with the retention of derivatives with respect to the parameters. 

NOTATION 

x,y, longitudinal and transverse coordinates in boundary layer; t, time; n, dimension- 
less transverse coordinate; U, velocity at outer limit of boundary layer; u,v, projections 
of velocity in boundary layer on x and y axes, respectively; ~,~, coefficients of dynamic 
and kinematic viscosity, respectively; W(x), amplitude of periodic component of velocity at 
outer limit of boundary layer; ~, frequency of velocity oscillations; 6o, thickness of oscil- 
latory boundary layer; 4, stream function; ~, dimensionless stream function of average motion 
of liquid in boundary layer; h(x), scale of transverse coordinate in boundary layer; z = 
h2/~; fk, qn, f~, dimensionless parameters; B, normalizing constant; 6*, displacement thick- 
ness; ~**, thickness of impulse loss; Tw, surface friction stress; F, H, H*, H**, character- 
istic functions; ~, reduced coefficient of surface friction; A, constant coefficient. 
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